Coccolithophore cell size and the Paleogene decline in atmospheric CO2
نویسندگان
چکیده
Article history: Alkenone-based Cenozoic r Received 30 November 2007 Received in revised form 26 February 2008 Accepted 4 March 2008 Available online 18 March 2008 Editor: R.D. van der Hilst
منابع مشابه
Decrease in coccolithophore calcification and CO2 since the middle Miocene.
Marine algae are instrumental in carbon cycling and atmospheric carbon dioxide (CO2) regulation. One group, coccolithophores, uses carbon to photosynthesize and to calcify, covering their cells with chalk platelets (coccoliths). How ocean acidification influences coccolithophore calcification is strongly debated, and the effects of carbonate chemistry changes in the geological past are poorly u...
متن کاملRefining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records
[1] Long-term alkenone-based pCO2 records are widely applied in paleoclimate evaluations. These pCO2 estimates are based on records of the carbon isotope fractionation that occurs during marine haptophyte photosynthesis (ep37:2). In addition to the concentration of aqueous CO2 (CO2(aq)) the magnitude of ep37:2 is also influenced by algal growth rates and cell geometry. To date, the influence of...
متن کاملChanges in calcification of coccoliths under stable atmospheric CO2
The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Mo...
متن کاملMarked decline in atmospheric carbon dioxide concentrations during the Paleogene.
The relation between the partial pressure of atmospheric carbon dioxide (pCO2) and Paleogene climate is poorly resolved. We used stable carbon isotopic values of di-unsaturated alkenones extracted from deep sea cores to reconstruct pCO2 from the middle Eocene to the late Oligocene (approximately 45 to 25 million years ago). Our results demonstrate that pCO2 ranged between 1000 to 1500 parts per...
متن کاملPhenotypic evolution and adaptive strategies in marine phytoplankton (Coccolithophores)
Šupraha, L. 2016. Phenotypic evolution and adaptive strategies in marine phytoplankton (Coccolithophores). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1427. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9689-0. Coccolithophores are biogeochemically important marine algae that interact with the carbon cycle through photosy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008